I'm trying to set collision detection on a .pk3 map that i've downloaded http://wolfenstein4ever.de/index.php/do ... agmaze-eiw and I'm having trouble.
In fact, when I loaded the map using irrlicht example 02.Quake3Map, only a few textures where loaded and the map looked like this:
However, when I loaded it with the example 16.Quake3MapShader, the map looked fine (except one or two missing texture):
I then modified the code of example16 to add collison detection to the map but it didn't worked. In fact, the collision detection only apply on a few objects on the map (the same objects that where showing when I loaded the map with example2) but not on the ground or the walls for example.
So I have two questions, why did the map not load properly with example 2 and how to make collision detection work in this case ?
Thanks
The code that i'm using:
Code: Select all
/** Example 016 Quake3 Map Shader Support
This Tutorial shows how to load a Quake 3 map into the
engine, create a SceneNode for optimizing the speed of
rendering and how to create a user controlled camera.
Lets start like the HelloWorld example: We include
the irrlicht header files and an additional file to be able
to ask the user for a driver type using the console.
*/
#include <irrlicht.h>
#include "driverChoice.h"
/*
define which Quake3 Level should be loaded
*/
#define IRRLICHT_QUAKE3_ARENA
#ifdef IRRLICHT_QUAKE3_ARENA
#define QUAKE3_STORAGE_FORMAT addFileArchive
#define QUAKE3_STORAGE_1 "./../media/map-20kdm2.pk3"
#define QUAKE3_MAP_NAME "maps/20kdm2.bsp"
#endif
using namespace irr;
using namespace scene;
/*
Again, to be able to use the Irrlicht.DLL file, we need to link with the
Irrlicht.lib. We could set this option in the project settings, but
to make it easy, we use a pragma comment lib:
*/
#ifdef _MSC_VER
#pragma comment(lib, "Irrlicht.lib")
#endif
/*
Ok, lets start.
*/
int IRRCALLCONV main(int argc, char* argv[])
{
/*
Like in the HelloWorld example, we create an IrrlichtDevice with
createDevice(). The difference now is that we ask the user to select
which hardware accelerated driver to use. The Software device would be
too slow to draw a huge Quake 3 map, but just for the fun of it, we make
this decision possible too.
*/
// ask user for driver
video::E_DRIVER_TYPE driverType=driverChoiceConsole();
if (driverType==video::EDT_COUNT)
return 1;
// create device and exit if creation failed
const core::dimension2du videoDim(1080,720);
IrrlichtDevice *device = createDevice(driverType, videoDim, 32, false );
if (device == 0)
return 1; // could not create selected driver.
const char* mapname=0;
if (argc>2)
mapname = argv[2];
else
mapname = QUAKE3_MAP_NAME;
/*
Get a pointer to the video driver and the SceneManager so that
we do not always have to write device->getVideoDriver() and
device->getSceneManager().
*/
video::IVideoDriver* driver = device->getVideoDriver();
scene::ISceneManager* smgr = device->getSceneManager();
gui::IGUIEnvironment* gui = device->getGUIEnvironment();
//! add our private media directory to the file system
device->getFileSystem()->addFileArchive("./../media/");
/*
To display the Quake 3 map, we first need to load it. Quake 3 maps
are packed into .pk3 files, which are nothing other than .zip files.
So we add the .pk3 file to our FileSystem. After it was added,
we are able to read from the files in that archive as they would
directly be stored on disk.
*/
if (argc>2)
device->getFileSystem()->QUAKE3_STORAGE_FORMAT(argv[1]);
else
device->getFileSystem()->QUAKE3_STORAGE_FORMAT(QUAKE3_STORAGE_1);
#ifdef QUAKE3_STORAGE_2
device->getFileSystem()->QUAKE3_STORAGE_FORMAT(QUAKE3_STORAGE_2);
#endif
// Quake3 Shader controls Z-Writing
smgr->getParameters()->setAttribute(scene::ALLOW_ZWRITE_ON_TRANSPARENT, true);
/*
Now we can load the mesh by calling getMesh(). We get a pointer returned
to a IAnimatedMesh. As you know, Quake 3 maps are not really animated,
they are only a huge chunk of static geometry with some materials
attached. Hence the IAnimated mesh consists of only one frame,
so we get the "first frame" of the "animation", which is our quake level
and create an Octree scene node with it, using addOctreeSceneNode().
The Octree optimizes the scene a little bit, trying to draw only geometry
which is currently visible. An alternative to the Octree would be a
AnimatedMeshSceneNode, which would draw always the complete geometry of
the mesh, without optimization. Try it out: Write addAnimatedMeshSceneNode
instead of addOctreeSceneNode and compare the primitives drawn by the
video driver. (There is a getPrimitiveCountDrawed() method in the
IVideoDriver class). Note that this optimization with the Octree is only
useful when drawing huge meshes consisting of lots of geometry.
*/
scene::IQ3LevelMesh* const mesh =
(scene::IQ3LevelMesh*) smgr->getMesh(mapname);
if ( 0 == mesh )
return (1);
/*
add the geometry mesh to the Scene ( polygon & patches )
The Geometry mesh is optimised for faster drawing
*/
scene::ITriangleSelector* selector = 0;
scene::ISceneNode* node = 0;
if ( mesh )
{
scene::IMesh *geometry = mesh->getMesh(quake3::E_Q3_MESH_GEOMETRY );
node = smgr->addMeshSceneNode ( geometry );
selector = smgr->createTriangleSelector(mesh->getMesh(quake3::E_Q3_MESH_GEOMETRY ), node);
node->setTriangleSelector(selector);
selector->drop();
}
//END
/*
now construct SceneNodes for each Shader
The Objects are stored in the quake mesh scene::E_Q3_MESH_ITEMS
and the Shader ID is stored in the MaterialParameters
mostly dark looking skulls and moving lava.. or green flashing tubes?
*/
if ( mesh )
{
// the additional mesh can be quite huge and is unoptimized
const scene::IMesh * const additional_mesh = mesh->getMesh(quake3::E_Q3_MESH_ITEMS);
#ifdef SHOW_SHADER_NAME
gui::IGUIFont *font = device->getGUIEnvironment()->getFont("../../media/fontlucida.png");
u32 count = 0;
#endif
for ( u32 i = 0; i!= additional_mesh->getMeshBufferCount(); ++i )
{
const IMeshBuffer* meshBuffer = additional_mesh->getMeshBuffer(i);
const video::SMaterial& material = meshBuffer->getMaterial();
// The ShaderIndex is stored in the material parameter
const s32 shaderIndex = (s32) material.MaterialTypeParam2;
// the meshbuffer can be rendered without additional support, or it has no shader
const quake3::IShader *shader = mesh->getShader(shaderIndex);
if (0 == shader)
{
continue;
}
// we can dump the shader to the console in its
// original but already parsed layout in a pretty
// printers way.. commented out, because the console
// would be full...
// quake3::dumpShader ( Shader );
node = smgr->addQuake3SceneNode(meshBuffer, shader);
#ifdef SHOW_SHADER_NAME
count += 1;
core::stringw name( node->getName() );
node = smgr->addBillboardTextSceneNode(
font, name.c_str(), node,
core::dimension2d<f32>(80.0f, 8.0f),
core::vector3df(0, 10, 0));
#endif
}
}
node->setDebugDataVisible(true);
/*
Now we only need a Camera to look at the Quake 3 map.
And we want to create a user controlled camera. There are some
different cameras available in the Irrlicht engine. For example the
Maya Camera which can be controlled compareable to the camera in Maya:
Rotate with left mouse button pressed, Zoom with both buttons pressed,
translate with right mouse button pressed. This could be created with
addCameraSceneNodeMaya(). But for this example, we want to create a
camera which behaves like the ones in first person shooter games (FPS).
*/
scene::ICameraSceneNode* camera = smgr->addCameraSceneNodeFPS();
scene::ISceneNodeAnimator* anim = smgr->createCollisionResponseAnimator(
selector, camera, core::vector3df(30,40,30),
core::vector3df(0,-0.01,0),
core::vector3df(0,50,0));
camera->addAnimator(anim);
anim->drop();
/*
Now we only need a Camera to look at the Quake 3 map. And we want to
create a user controlled camera. There are some different cameras
available in the Irrlicht engine. For example the Maya Camera which can
be controlled comparable to the camera in Maya: Rotate with left mouse
button pressed, Zoom with both buttons pressed, translate with right
mouse button pressed. This could be created with
addCameraSceneNodeMaya(). But for this example, we want to create a
camera which behaves like the ones in first person shooter games (FPS).
*/
scene::IAnimatedMeshSceneNode* anms =
smgr->addAnimatedMeshSceneNode(smgr->getMesh("../../media/sydney.md2"));
if (selector)
{
scene::ISceneNodeAnimator* anim =
smgr->createCollisionResponseAnimator(selector, anms,
core::vector3df(20,46,20),
core::vector3df(0,-0.01,0),
core::vector3df(0,0,0));
selector->drop(); // As soon as we're done with the selector, drop it.
anms->addAnimator(anim);
anim->drop(); // And likewise, drop the animator when we're done referring to it.
}
if (anms)
{
/*
To make the model look right we disable lighting, set the
frames between which the animation should loop, rotate the
model around 180 degrees, and adjust the animation speed and
the texture. To set the right animation (frames and speed), we
would also be able to just call
"anms->setMD2Animation(scene::EMAT_RUN)" for the 'run'
animation instead of "setFrameLoop" and "setAnimationSpeed",
but this only works with MD2 animations, and so you know how to
start other animations. But a good advice is to not use
hardcoded frame-numbers...
*/
anms->setMaterialFlag(video::EMF_LIGHTING, false);
anms->setMD2Animation(scene::EMAT_STAND);
anms->setMaterialTexture( 0, driver->getTexture("../../media/sydney.bmp") );
anms->setRotation(core::vector3df(0,270,0));
anms->setPosition(core::vector3df(0, 0, 0));
anms->setScale(core::vector3df(2, 2, 2));
}
/*
so we need a good starting Position in the level.
we can ask the Quake3 Loader for all entities with class_name
"info_player_deathmatch"
we choose a random launch
*/
if ( mesh )
{
quake3::tQ3EntityList &entityList = mesh->getEntityList();
quake3::IEntity search;
search.name = "info_player_deathmatch";
s32 index = entityList.binary_search(search);
if (index >= 0)
{
s32 notEndList;
do
{
const quake3::SVarGroup *group = entityList[index].getGroup(1);
u32 parsepos = 0;
const core::vector3df pos =
quake3::getAsVector3df(group->get("origin"), parsepos);
parsepos = 0;
const f32 angle = quake3::getAsFloat(group->get("angle"), parsepos);
core::vector3df target(0.f, 0.f, 1.f);
target.rotateXZBy(angle);
camera->setPosition(pos);
camera->setTarget(pos + target);
anms->setPosition(pos);
++index;
/*
notEndList = ( index < (s32) entityList.size () &&
entityList[index].name == search.name &&
(device->getTimer()->getRealTime() >> 3 ) & 1
);
*/
notEndList = index == 2;
} while ( notEndList );
}
}
/*
The mouse cursor needs not to be visible, so we make it invisible.
*/
device->getCursorControl()->setVisible(false);
/*
We have done everything, so lets draw it. We also write the current
frames per second and the drawn primitives to the caption of the
window. The 'if (device->isWindowActive())' line is optional, but
prevents the engine render to set the position of the mouse cursor
after task switching when other program are active.
*/
int lastFPS = -1;
while(device->run())
if (device->isWindowActive())
{
driver->beginScene(true, true, video::SColor(255,20,20,40));
smgr->drawAll();
gui->drawAll();
driver->endScene();
int fps = driver->getFPS();
//if (lastFPS != fps)
{
io::IAttributes * const attr = smgr->getParameters();
core::stringw str = L"Q3 [";
str += driver->getName();
str += "] FPS:";
str += fps;
#ifdef _IRR_SCENEMANAGER_DEBUG
str += " Cull:";
str += attr->getAttributeAsInt("calls");
str += "/";
str += attr->getAttributeAsInt("culled");
str += " Draw: ";
str += attr->getAttributeAsInt("drawn_solid");
str += "/";
str += attr->getAttributeAsInt("drawn_transparent");
str += "/";
str += attr->getAttributeAsInt("drawn_transparent_effect");
#endif
device->setWindowCaption(str.c_str());
lastFPS = fps;
}
}
/*
In the end, delete the Irrlicht device.
*/
device->drop();
return 0;
}
/*
**/